
HYPERSONIC FLOW AROUND A CIRCLE AND 
A SPHERE IN A MAGNETIC FIELD 

(GIPERZVUKOVOE TECHENIE OKOLO KRUOA I SFERY 

V MAGNITNOH POLE) 

PMM Vo1.27, No. 6, 1963, pp. 1089-1094 

P. I. CHUSHKIN 

(MOSCOW) 

(Received August 15, 1963) 

When blunt bodies move with highly supersonic velocities strong ioniza- 

tion of the air occurs behind the detached shock wave. With the help of 

an external magnetic field, therefore, it is possible to influence this 

flow so as to cause a decrease in the heat transfer and an increase in 

the drag of the body, which is important for flying machines entering 

the dense layers of the atmosphere. A case of practical interest is 

such a flow at moderate magnetic Reynolds numbers Rn; the field of flow 

does not then have any influence on the magnetic field, which can there- 

fore be regarded as specified. In [l-31 hypersonic flow was considered 

in the neighborhood of the stagnation point of a magnetized sphere, 

when the density behind the shock wave was assumed constant and the 

number Ra small. Bush’s investigation [41, which studied the analogous 

problem for finite values of the magnetic Reynolds’ number, showed that 

its influence on the solution was weak. 

Below we calculate the flow around a circle or a sphere (in all its 

region of influence), moving with highly supersonic velocity in a 

magnetic field at small values of Rn. For the solution we applied 

Dorodnitsyn’ s method of integral relations [51. Belotserkovskii [6, ‘71 

used this method to solve the problem of supersonic flow past blunt 

bodies in a nonconducting gas. We give below a generalization of this 

solution to the case of magnetized bodies in a conducting gas. 

1. Formulation and equations of the problem. Suppose that a blunt 

magnetized body of given shape (circle or sphere) is placed in a uni- 

form stream of perfectly inviscid, thermally nonconducting gas flowing 

along its axis of symmetry with a highly supersonic value of the Mach 
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number M,. The gas in front of the detached shock wave is assumed to be 

nonconducting electrically, whilst behind the shock wave the coefficient 

of electrical conductivity q of the gas is considered to be either con- 

stant, or proportional to the fifth power of the temperature. The 

magnetic Reynolds’ number is assumed to be small. It is assumed that 

the magnetic field is created by a plane or axisymmetric magnetic dipole, 

located at the center of the circle or sphere, respectively, and having 

its axis parallel to the direction of the incident stream. The electric 

field is everywhere equal to zero. 

The problem consists in determining the composite flow in the region 

of influence, and in particular in the construction of the detached 

shock wave.and the calculation of the flow parameters on the surface of 

the body. Because of symmetry it is sufficient to consider only the 

upper half-plane. 

The system of equations of magneto-gas-dynamics (the equation of con- 

tinuity, the momentum equation and the entropy equation) in the case 

under consideration have the form 

div pw = 0, 
da- 

P~~+VP=F, 
dq x-l 

-z=- RX F*w 

where the ponderomotive force F is given by 

F = b (wXH)xH, 

(1.1) 

(I.3 

System (1.1) is written in dimensionless variables, with the linear 

dimensions referred to the radius of the body R. the velocity w to the 

critical velocity of sound a , the density p to the density of the in- 

cident stream pm, the pressuze p to the quantity p,,,a 2 and the intensity 

of the magnetic field H to its value H at the stagnition point. More- 

over, in equations (1.1) and (1.2) K denotes the adiabatic index, (+I the 

entropy function, b the dimensionless parameter characterizing the 

strength of the magnetic field, c the velocity of light and q the value 

of the coefficient of electrical conductivity at the stagnati& point 

cp = P I PI* S = cv In rp + const 

where S is the entropy and c,, is the coefficient of thermal capacity at 

constant volume. 

The solution of the problem will be developed for the case of a 

circle (v = 0) and a sphere (v = 1); we shall therefore use polar co- 
ordinates r and 8 with the pole at the center of the body. The components 

of the magnetic field vector, created by a dipole placed at the center 
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of the circle or the sphere, are equal to 

c.os # 
If, -= -,2- , 

sin e 
ff, : .----- (1 + Y) rziv 

The corresponding components of the ponderomotive force are expressed 
thus: 

F, == - b (ufi,, - z-H,) Ho, F, = b (uH, - vH,) H, 

where u and v are the components of the velocity vector n along r and 8, 
respectively. 

The three equations of system (1.1) give the variation of entropy 
along a streamline conditioned by the action of the magnetic field, and 
can be rewritten in the form 

The system of equations (1.1) has a Bernoulli integral, which in the 
case under consideration in the absence of electric field is given by 
the expression 

The Bernoulli integral will take the place of tbe momentum equation 
along the curve r = const. Let us introduce the function T 

-;;--‘-i z :_. iJcy 

and transform the equation of continuity by taking aCCount of (1.3). 
The transformed equation of continuity and the equation of momentum 
along 6 = const will be written in the form 

(1.5) 

where 

h == r”zu, y 1: pv.‘: 1‘ p z:- Sin’ 8, G z _- $-t”,p-l (F , ~1 

Q = r” (p + w2), P = r’ puu, g := r” (2”~ + pva + rF,j 

Let us denote by E the distance along a ray 8 = const from the con- 
tour of the body to the shock wave and by u the angle of inclination of 
the shock wave to the axis of the flow. Tben, *to determine the radius 

of the shock wave 
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we have the equation 

d.e -=--_(I-!-&) cot (a. e) 
d0 

(1.6) 

Equations (1.3) to (1.6) form a system for the five unknown functions 

u, v, p, p and U. The boundary conditions for this system are as follows: 

on the body surface (r = 1) 

u=o 

on the shock wave 

U n = wysinO - wxCOs 0, V n = w,sin 6 + wycos 6 

(1.‘7) 

[ 

2 ’ 1 
w,=w, I-- __ __ x+1 i 

sin2 0-- kf,a ' )I WY = (woo- WJ cot d 
w,a= (X+l)McoB 2 

2 + (x - 1) M,S ’ Pn = 
~ wm2 sin% - 
x+i 

%+ 1 -x--i w,2) 
( x+i 

(x Ji 1) woo2 sin2a 
Pn= (x+1)-((x-l)w,~cos% ’ 

I&’ Pn 
Pn 

x 

on the flow axis (8 = 0) 

v = 0, fJ=R (-f =q)*z%+ I 
2xww 

---2X 

2 ’ ( w,a_“- I 
x+1 1 (1.8) 

Here the last equation follows from the shock wave relations with 
u = l/2 TI and equation (1.3). which shows that behind the shock wave on 
the axis 8 = 0 variation of entropy does not occur. since F = 0. r 

2. Integral relation8 and the approximating system. For the solution 
of system (1.3) to (1.6) we shall apply the method of integral relations. 
Considering the nth approximation, the region of flow between the body 
and the shock wave is divided into n zones by means of the system of 
curves 

r = ri(e) = 1 + i E (0) (i = 0, . . .( 4 

The values of all the functions on the curve r = ri(6) will be de- 
noted by the subscript i. so that the body contour will correspond to 
the subscript 0, and the shock wave to the subscript n. We shall inte- 
grate the partial differential equations (1.5) with respect to r from 

‘0 = 1 up to each curve r = ri(B) ( i = 1. . . . , n). Then taking account 
of the fact that ho = 0 we obtain a system of 2n independent integral 
relations 

‘i ri 

1 d -- 
P de s 

~LQ dr - qi !!&- f ri hi = 
I 
’ G dr 

1 1 
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‘i 
dr, 

'i 
1 d ' - -.- 
P de \ 

i 

~Pdr- Pi do -in ‘i Qi-- Qe -1 
5 

g dr (i = 1,. . . ( n) 

1 

All the integrands are represented approximately by interpolation 

polynomials of the nth degree in r with centers of interpolation on the 

curves r = r;(8). As a result the integral relations reduce to 2n 

ordinary differential equations with respect to 8 for the values of the 

required functions on the curves r = ri(8). Including equations (1.3) 

and (1.6), the whole approximating system will include 3n + 1 differ- 

ential equations and, after solution, can be represented in the follow- 

ing form: 

.+ = -((1 + E) cot (0 $ e), do .~_ I:‘0 dui lYi _ 
d0 

-- -, 
do Do, de Di 

@i 
(2.1) 

X-1 -_ yjfr :- - pix 
Fi $ f- ri Foi Di = & (Q - Vi’) 

r 

where E,, Ei and Vi are certain functions, holomorphic in the region 

under considerat ion, with forms depending upon n. The denominators D. 

vanish at the points where the velocity component vi attains the lo& 

speed of sound ai. i.e. at the points where the ray 8 = const touches 

the characteristic. This connection between the characteristics and the 

singular points is essential in the given method. Accordingly, the n 

equations of system (2.1) have a moving singular point which. as invest 

gation shows, is a saddle point. 

i- 

The approximating system (2.1) is integrated numerically from the 

axis 8 = 0, where conditions (1.6) apply to the functions vi, u and Q~. 

The unknowns here, i.e. the n - 1 values of ui and the value of E, are 

determined by the requirement for regularity of the solution at the n 

singular points, where we must have Ei = 0 (and automatically E, = 0). 

After solution of this boundary problem the values of the required func- 

tions are found on the curves r = r;(B), and from them, to the degree 

of approximation assumed, the whole field of flow can be constructed. 

We notice that in the axisymmetric case the point 8 = 0 for system (2.1) 

is also a singular point, but of regular type, and the indeterminacy 

here is easily elucidated. 

We shall now derive the actual form of the approximating system (2.1) 

for the approximation n = 1. In this case 
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da=_!_ 
d8 al 

go + gl + (Qo - rlQ3 a - rlVPl (~12 - up) $ * 

dva -- = 2xz~x-z 
d6 (x + 1) Do 

co+ ~,+(~-~)h,-(g,-~)+~-~o~-~o] 

dvo _ 
x-l 

F,,, 
de - -- _ - = 

d0 POX d6 
- rl c0t (a + 0) 
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dc: 6 
x- l I 

(2.2) 

where 

a0 = 
rl” T12-’ 

2x 
[(x f 1) (1 - VP) VI’ - 2UlUIUI’] 

a1 = lfL 
21 [ 

u1 (a, - * w’)+ Ql"'1 

I 

60 = v (qo + qJ cot ‘3, 61 = VP, cot 8 

and Us’, vl’ and 91 here signify the derivatives with respect to o of 

these functions at the shock wave, which are determined from formulas 

(1.7). 

In equations (2.2) for o and u0 in the axisymmetric case when 8 = 0 

there is indeterminacy in the terms 6, and 61. After resolving the in- 

determinacy. the equations for o and u0 may be put into the previous 
form, but in them it is necessary to double the values for D,, a,, and al 

and set 

6, = - h,, 6, = - r1p1u12. 

We notice again that when n = 1 the equation for vc, when 8 = 0 and 

with the given h!,,,, K and b, connects the velocity gradient at the stag- 

nation point dv,,/de with the distance of detachment of the shock wave E. 

Insofar as the latter quantity has been determined by experiments in 

shock tubes, then from E by means of this connection we can find approxi- 

mately the value of dv,,/d0. which plays an important role in the calcu- 

lation of heat transfer. 

3. Examplea. Using the method described above to the first approxima- 

tion (n = 1) we have calculated the flow past a magnetized circle and 

sphere for highly supersonic velocities. The calculations were carried 

out only for the region of subsonic and mixed flow, i.e. in the cases 

considered up to values of 8 corresponding to the sonic point on the 

body. Generally speaking, by the method of integral relations we can 

calculate the supersonic flow also up to large values of 8, but here it 

is more convenient to apply the numerical method of characteristics. 

In Figs. 1 to 3 are shown the results of the calculations for the 
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case of flow past a sphere in a stream of air (K = 1.4) with Mach number 
M, = m, for values of the magnetic field para- 
meter b = 0, 4 and 16. For the case b = 16, 

in order to show the nature of the influence 

Fig. 1. Fig. 2. 

of the coefficient of electrical conductivity rb we considered two 

variants - in one (the continuous curves in the pictures) the quantity 

‘1 was assumed constant, whilst in the other [the dotted curves) we 

assumed the following dependence of q on the temperature T: 

where q and T are the values of q and T at the stagnation point. This 

functiorfal depgndence was obtained by processing the experimental data _ _ 
of 16J. 

In Fig. 1 are shown the shock waves 

cases the sonic line is situated below 

sonic point on the body. 

for b = 0, 4 and 16. In all these 

the ray 8 = const through the 

The influence of the magnetic field on the pressure distribution on 

the body poo = P,,/P , expressed in terms of the pressure at the stagna- 

tion point p , is shown in Fig. 2. Stronger magnetic fields cause a 

significant increase in the pressure on the body and a pronounced move- 
ment of the sonic point towards the direction of increasing 6, but in 

the case of variable ‘1 these changes are appreciably smaller. The calcu- 
lations show that for the sphere the coefficient of wave drag cz for the 
portion of the body bounded by the sonic point increases in the case 
q = const when b = 4 by 2.5 per cent and when b = 16 by 24 per cent as 

compared with cX for the same region of the body when b = 0. In the case 
of variable q, however, when b = 16 the corresponding increase in cz 

amounts to 8.8 per cent. For orientation purposes we notice that in the 
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conditions of orbital flight of a sputnik the value of the parameter 

b = 1 corresponds to a magnetic field intensity H of order lo4 gauss. 
l 

In Fig. 2 are shown also the curves of variation of the entropy func- 

tion be = (T,, - Q )/T along the contour of the body. 
l l 

In Fig. 3 we show as a function of the parameter b, for a sphere at 

M, = a~ and K = 1.4, the ratio E’ of the distance of detachment of the 

shock wave at the stagnation point to the corresponding distance of de- 

tachment of the shock wave in the absence of a magnetic field (b = 0). 

Here also is shown the analogous ratio for the gradient of velocity at 

the stagnation point on the body (we’)‘. 

Finally, in Fig. 4 we present the results showing the influence of 

the Mach number M,. Here are 

shown the pressure distribution 
, 

p,,’ and the entropy function fLq+, I0 

05 

0 

Fig. 3 Fig. 4. 

on the sphere for a value of the parameter b = 16 and M, = 6, 10 and a~. 

We notice that the quantities E’ and (ve ‘)O in this case depend very 

weakly on M,,,. 

In conclusion we observe that the method of solution, described in 

this paper only for the case of the circle and the sphere, can be ex- 

tended without difficulty to the case of blunt symmetric bodies of more 

general shape. Then instead of the polar coordinates r and 8 it is 

appropriate to use coordinates so and no, where so is arc length measured 

along the contour of the body and no is the normal to the contour of the 

body. We notice that for solution of the problem under consideration we 

can also apply another scheme, in which the approximation is carried 

out for 8 whilst the approximating system is integrated with respect to 

r from the shock wave to the body. Then the form of the shock wave is 

determined by fulfilling the condition of no flow across the body. 

The author expresses deep gratitude to V.P. Korobeinikov for 
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discussion of the paper and to K.V. Sharovatova for carrying out the 

calculations. 
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